calculations show that the swelling substantially influences the infiltration into the clay soil.
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GROWTH AND COLLAPSE OF VAPOR BUBBLES IN
BOILING LIQUID

F. B, Nagiev and N. 8. Khabeev UDC 532.529

A study is made of the dynamics and heat-mass exchange of vapor bubbles in water and cryogenic liquids
under the action of an abrupt pressure change, which corresponds to bubble behavior in a shock wave, when the
wave enters a bubble curtain, Behavior under varying pressure is also studied.

A system of basic equations describing the heat-mass exchange processes and dynamics of a spherical
homobaric bubble in a liquid was presented in [1]. The equations of heat adflux, continuity, and statein spher-
ical Euler coordinates (r, t) have the form

du ou 1 @ aT p, dp
oo+ Ge) = Frar (o )+ 55
[
B () =0, po(®) = Beo(r, D To (),
r - -~

ou, | w4 @ aT,
. A 2
p’('at_'*'v‘?r“)_ 2 or (;“r a )

v = w R, wy =Ty, u, = cyT,, py = const,

where p is the density; T, temperature; p, pressure; v, velocity; u, specific internal energy; A, thermal con~
ductivity coefficient; R, bubble radius; w;, mass velocity of liquid on bubble surface; B, gas constant; cy,
specific heat of vapor at constant volume. The subscripts / and v refer to liquid and vapor parameters, re-
spectively, while the subscript 0 indicates parameters in the unperturbed state,

The boundary conditions for the heat adflux ‘equations have the form

r =0, aT,/or =0,
r=oo, Iy =T, {2)

ar orT .
T=R(t)z }"l-arl"—xn_a%=]lz Tvalsz(po)v

where Tg(py) is the saturation temperature; j is the rate of phase conversion per unit surface; ! is the latent
heat of evaporation. The last condition defines the so-~called quasi-equilibrium approximation, The bubble
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surface velocity and the phase mass velocities on this surface are related by the expressions
R = w; + j/ph R = W, +_f/pn(R)' 3)
The bubble pulsation equation in the presence of phase transitions is written in the form [2]

25w P, ~— P, — 20/R
_g_wff_*__.__i:___f’__;’i__.*_.g{_"-wh (4)

-
Rw‘ - p‘ P, B

where poo is the liquid pressure far from the bubble; o, surface tension coefficient; v, kinematic viscosity
coefficient.

In fulfilling the homobaric condition, when the bubble size is significantly less than the length of a sound
wave in the vapor, the equation of heat adflux in the vapor phase has an integral

dp, 3(v—1)( f’”%) Sy,
&t T R o 5 Ir I ©)

The homobaric condition also permits definifion of the velocity profile within the bubble by integration of the
vapor phase continuity equation with consideration of the boundary conditions vy (0, t) = 0, vy (R, t) = wy:

| aT oT_
Vp (r, t) = —%—- w, + 1@“ [7»» _ﬁl'L (T‘, t) - —rR—(}\,v _5;';)1%]"’ 6)

where vy is the adiabatic index of the vapor.-

In [1] the above system of equations was solved numerically for various regimes of radial bubble motion
in water under conditions close to normal. In the present study we will examine the dynamics of vapor bubbles
in water under high pressure, and also in cryogenic liquids,

Figure 1 shows curves of bubble radius and internal pressure (dashed curves) as functions of time for
growth of bubbles with initial radii of Ry =5, 7, 10 um (curves 1-3), when the liquid pressure far from the
bubble is abruptly reduced from p, =4- 10° Pa to p;=2- 10® Pa. Figure 2 shows the characteristic tempera-
ture distribution corresponding to curve 3 of Fig. 1. Curves 1-5 correspond to times t = 0,05, 0.1, 0.3, 0.6,
0.9 usec, Here R* = R/ Ry, P =py/py ® = T/ Ty, ¢ =r/R. The initial temperature in the system was homo-
geneous and equal to the saturation temperature corresponding to equilibrium pressure within the bubble: T, =
Tg(pY, p’ = po + 20 /Rg. For greater clarity the spatial scales for vapor and liquid phases are different.

It is evident from Figs. 1 and 2 that with passage of a certain time the pressures within bubble and liquid
equalize, the temperature of the vapor within the bubble gradually reduces to the saturation temperature cor-
responding to the external pressure py, and further bubble growth occurs in the thermal regime [3], The tem-
perature distribution in the liquid enters a self-similar regime, in which the temperature is dependent solely
on ¢ =r/R(t) [4]. Thus, at high pressures the behavior of gas bubbles with a dropoff in pressure is qualita-
tively the same as under normal conditions {1]. However, at high parameter values, where the thermophysical
properties of vapor and liquid approach each other, the role of internal thermal energy increases.

We note that the temperature of the vapor in the bubble is practically homogeneous and equal to the
saturation temperature not only under the usually employed but seldom realizable condition that the bubble
size be less than the thickness of the thermodiffusion layer in the vapor R < (ay /w)l/z, but also under the
condition cpTs /1 =1, where ay is the thermal diffusivity of the vapor, Cp is the vapor specific heat at con-
stant pressure, and w is the frequency of radial bubble oscillation. In fact, it follows from the equation for
energy in the vapor phase, Eq. (1), that vapor heating in the central part of the bubble where there are no
large temperature gradients is defined by the approximate equation

0,058T,/dt =~ dp,/dt. ()

Using the Clapeyron—Clausius relationships under conditions far from critical, where py << P, one can
write

dnv lpv de
dt — Tg 4t ®
Substituting Eq. (8) in Eq. (7}, we find
c. 7. dT dT &
p’s % T8
7 di T4t ©)
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It is evident from Eq. (9) that at A = ¢;Tg/l ~ 1 (under atmospheric pressure this occurs, for example, for
liquid helium, and also occurs for water at p ~ 3-10° Pa) Ty, ~ Tg, and the amouxx‘g of deviation of the param-
eter A from unity characterizes the deviation of the temperature in the center of & sufficiently large bubble
from the surface temperature Tg(py).

The bubble heat capacity along the phase equilibrium curve is written in the form [5]

mp (9PN 8 () .

g = Cp T(dT)SaT(p)pNCP . (10)
For the majority of liquids, in particular, for water, under normal conditions cg < 0. This means that for the
vapor to remain saturated during compression heat must be removed from it.

If we integrate the equation of heat adflux (1) over the bubble volume (given its homogeneity) we then
obtain an expression for the total flux into the vapor phase on the bubble surface
6Tv h CSTS —R_ dPD (11)

ho =5 ® 1 3 dt

From Egs, (10), (11) it is evident that at A =1 ¢g = 0 and the heat flux into the vapor bubble is equal to
ZEro,

From Egs. 2), (10), (11) it follows that

ar, Rp, Yp, & 12)

My = 3 oAV + w5

1 A1)
where ¢(4,7) = 5—p7 +4 4

Normally the thermal flux into the vapor phase is neglected in Eq. (2), which corresponds to approxima-
tion by the term (A — 1)%/A in ©(A, v). From Eq. (12) it is evident that this is admissible if

(4 — 12 < 1y —1). (13)

Equation (13) was obtained assuming homogeneity of bubble parameters, i.e., strictly speaking, for sufficiently
small bubbles. At high parameter values where the properties of vapor and liquid approach each other, the
unjustified assumption of homogeneity in bubble parameters can lead to significant errors,

Figure 3 shows characteristic temperature distributions for pulsations of vapor bubbles of two different
sizes in water, produced by instantaneous increase in liquid pressure far from the bubble from p, = 4-10° Pa
to p; = 8-10° Pa (a: Ry = 0.01 mm; b: Ry =1 mm), with Ty = Tg(p®. Curves 1-6 correspond to times wt = 0,
2n/5, 4n/5, 6w/5, 87/5, 27, while wt = 0 and 27 are two successive times of maximum bubble compression,
As is evident from Fig. 3, the temperature distribution curves are nonmonotonic, with temperature "wells"
appearing in certain time intervals. In the variant under consideration cg > 0; therefore upon compression the
temperature at the bubble center is less than the surface temperature Ts(py).

Figure 4 shows a comparison of theoretically calculated radius-time curves with experimental data [6]
on bubble growth in liquid nitrogen with gradual pressure decrease from p, =153 103 Pa to p;=116- 10° Pa
corresponding to curve 5, Initial bubble radius Ry = 0.4 mm; initial temperature in the system was homo-
geneous and corresponded to the saturation temperature Ty = Tg(p’). Curve 1 is a solution of the problem in
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the full formulation of [1] as presented here; curve 2 is an inertial Rayleigh solution obtained by numerical
integration of Eq. (4) with py = 153 +10% Pa, py(t) corresponding to curve 5. Curve 3 corresponds to asymptotic
bubble growth in the thermal regime of [3], defined by a constant overheating AT = Ty~ Tg(p;). In this case

R ~ Vi. Curve 4 is an approximate analytical solution of the probliem of bubble growth in a variable pressure
field, obtained in [7]. This solution, obtained with the assumption that the thermal mechanism predominates
and that the thermal boundary layer in the liquid is thin, generalizes the solution of [3] to the case of variable
pressure. Certain differences between curves 1 and 4 are apparently related to the fact that in contrast to [7],
the present study completely considers the effects of variation in the vapor properties, As is evident from Fig.
4, curves 1 and 4 describe the experiments satisfactorily, while the limiting curves 2 and 3 bracket the ex-
perimental points. We note that the data of [6] with decreasing pressure were obtained on preexisting bubbles.
However, as was noted in [7], one cannot predict the type of thermal boundary layer existing in bubbles which
have grown or collapsed, nor the effect of this layer on subsequent behavior.

Figure 5 shows computed radius—time curves for collapsing vapor bubbles in various liquids, Curves
1-5 show bubble behavior in water, Freon-12, nitrogen, hydrogen, and helium under identical initial condi-
tions. The pressure in the liquids was instantaneocusly increased from p, = 10° Pa to py=12- 10* Pa, with ini-
tial bubble radius Ry = 10 pm, initial system temperature homogeneous and equal to the saturation tempera-
ture corresponding to equilibrium pressure in the bubbie,

The behavior of curves 1-5 in Fig. 5 confirms the effectiveness of the parameter By = Ja’a;/ Ry(p;/Ap) /2
introduced in [8] for predicting the character of vapor bubble collapse. Here Ja = clATpZ/lpvo is the Jacobi
number, a; is the thermal diffusivity of the liquid, Ap = p; —pg, AT = Ts(py) — Tj. The parameter B, was de-
fined in [8] as the ratio of the characteristic bubble collapse time ty = Ro(pl/Ap)l/z, if this process were
limited only by liquid inertia, to the bubble combination time tT = R3/a;Ja?, if the latter were determined
solely by heat transfer. Thus, for large values of B, the bubble collapse process is close to the limiting iner-
tial regime, while at low By it is close to the thermal regime. Curves 1-5 in Fig. 5 correspond to values By =
8; 6-107% 1074 5-107% 2. 1074,

Figure 6 shows a comparison of calculated radius—time curves with experimental data [8] on collapse of
air vapor bubbles in water under following initial conditions: Ry = 3.66 mm, p, = 636 - 10 Pa, Ty = Tg(py (curve
1), Ry = 3.36 mm, py=734-10° Pa, T, = Tg(p, (curve 2). In both cases the system was abruptly placed under
an atmospheric pressure of p; = 10° Pa, with the initial content of undissolved gas in the bubbles comprising
k =0.0002, 0.0006, respectively. To consider this fact curve 2 was also calculated with a system of equations
for vapor-gas bubbles [9] (dashed line). Calculations showed that such a low gas content has practically no
effect on the initial behavior of the radius—time curve, leading only to incomplete collapse of the bubbles.

For clarity the curves are shown with different scales: curve 1 corresponds to the left-hand vertical and
upper horizontal axes, while curve 2 corresponds to the right-hand vertical and lower horizontal axes. The
present results agree well with the experimental data, The dash--dot curve represents theoretical calculations
of [10] for curve 1. In [10] an arbitrary assumption of parabolic velocity distribution of vapor particles in the
bubble was used, leading to a distortion of the temperature profile, Moreover, as was noted in [1], the authors
of [10] neglected the thermal flux into the vapor phase, However, as follows from the results of the present
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study, the major shortcoming of [10], leading to significant divergence from experiment, was the improper
choice of a step size in the finite difference system for the liquid energy equation. These steps should satisfy
the condition h] < §;, where 67 ~ al/w)1/2 is the thickness of the femperature boundary layer in the 11qu1d

w = 3ypy/pY 1/2/ R, is the frequency of radial bubble oscillation. For the variant shown in Fig. 6, 6; ~ 107" m,
or 6;~0.3" 1072 R,. Consequently, the step h; should satisfy the condition h; £ 1073 R¢. The choice in [10] of a
coarser step (hy = 10~2 Ry) led to a significant reduction in the liquid temperature gradient in the wall boundary
layer, and thus to a significant reduction in phase transition rate, since, according to Eq. @),

. ar, AT
Rt <h g,

whence
MAT
7105 g———h’]o . (14)

Substituting in Eq. (14) the parameter values corresponding to the variant calculated in Fig. 6, with by =
107% R,, we obtain ]/p < 0.2 m/sec. At the same time R ~ (Ap/pp)!/? = 6 m/sec. Consequently, with this

choice of step j/pv < R, and according to Eq. (3) wy & R. The latter, if we also neglect the thermal flux into
the vapor phase [10], leads by integration of Eq. (5) to the well-known relationship for an adiabatic gas bubble

p R* = const.

Thus, the close agreement observed by the authors of [10] between their calculations and the behavior
of a constant-mass adiabatic gas bubble, together with the divergence from the experimental results of [8] (no
clear bubble pulsations observed), is hardly surprising.

The authors thank R. I. Nigmatulin for his interest in the study and for his valuable advice.
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